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1 Consequences of the Uniformization Theorem

1.1 Deck transformations

We have shown the Uniformization theorem.

Theorem 1.1 (Uniformization). Let X be a simply connected Riemann surface.
1. If Green’s function exists for X, then there is a holomorphic bijection X — D.
2. If X is compact, then X = C.
3. If X is not compact and if Green’s function does not exist, then X = C.

What does this say about non-simply connected Riemann surfaces?
Let X be a connected topological manifold. Let X be the universal covering space of
X with covering map p: X — X.

Definition 1.1. We say that a homeomorphism ¢ : X — X is a deck transformation
if pop =p.

Proposition 1.1. The set of deck transformations is a group G which acts transitively on
the fibers: if &,9 € X such that p(Z) = p(y), there is a unique ¢ € G such that p(T) = 7.

Proof. The lifting criterion applied to p gives a unique ¢ : X — X such that po @ =pand
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¢ is a homeomorphism because there is a continuous map 1) : X — X such that Pot = p

and Y(g) = &. Sopowoh =pand ¢(1(y)) =g. So ¢ o =1 by the uniqueness of lifts.
So ¢ is a deck transformation. O



Proposition 1.2. The group G acts on X freely: for all ¢ € G with ¢ # 1, ¢ has no fized
points. Also, the orbits GT = {¢(Z) : p € G} = p~1(p(F)) are discrete, as p is a cover.

Corollary 1.1. The space of orbits X/G is naturally identified with X, also topologically
if X/G’ is equipped with the quotient topology: O C X/G is open iff T 1(P) C X is open,
where : X — X/G is the quotient map T — GZI.

1.2 Partial classification of Riemann surfaces

Let X be a Riemann surface. Then X is a Riemann surface, and p : X = X is s holomorphic.
So every ¢ € G is holomorphic: G C Aut(X X) = {holomorphic bijections X — X}. We
have X = X /G, where by uniformization, X = C, C, or D.

1. X = C: We have that G C Aut(C) = {0 : o(z) = Zjis,ad— bc # 0}. Every

o € Aut(C) has a fixed point, so G = {1}. We get that if X is a Riemann surface
with C has the universal covering space, X = C.

2. X = C: We have that G C Aut(C) = {0 : 0(2) = az+b,a # 0,b € C}. The elements
of G have no fixed points, so a = 1. We get that G C {0 : 0(2) = z + b,b € C},
the complex translations. G acts with discrete orbits, so (by a fact we will not prove
here!) one of the following holds:

(a) G={1},s0 X ZC.

(b) G = {0 :0(2) = z+ ny,n € Z} for some v € C\ {0}. We have a natural
isomorphism X = C/{z — z 4+ ny} = C\ {0} via [z] — €27%/7,

(¢) G={o:0(2) =ny+md+z,n,m € Z}, where v, € C are linearly independent
over R. In this case, X is isomorphic to the complex torus.

Thus, if X is a Riemann surface with X = C, then X = C, C \ {0}, or a complex
torus.

3. X = D. Then X = D/G, where G C Aut(D) acts freely. Such subgroups are called
Fuchsian groups. This is the general case.
1.3 Examples of applications

Example 1.1. Let M be a compact Riemann surface, and assume that there is some
f € Hol(C, M) which is non-constant. What can be said about M? Lift f to the universal

!This fact has nothing to do with Riemann surfaces. We have a discrete group acting on a real vector
space, so the number of generators should be < the dimension of the vector space.
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Then f is non-constant, so M # D. If M = C, then either M =~ C or M = C and M = a
torus.

Theorem 1.2 (Picard’s little theorem). Let f € Hol(C) be such that 0,1 ¢ f(C). Then f
18 constant.

Proof. We can lift f:

C ? C\{0,1}
By Liouville’s theorem, f is constant. So f is constant. O

This is the end of our discussion of Riemann surfaces. If you are interested in learning
more, here are books which have a modern approach to analysis on Riemann surfaces:

e S. Donaldson, Riemann surfaces.

e D. Varolin, Riemann surfaces by way of complex analytic geometry.
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